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Abstract
Recent advances in whole-slide imaging (WSI) technology have led to the development of a myriad of computer
vision and artificial intelligence-based diagnostic, prognostic, and predictive algorithms. Computational Pathol-
ogy (CPath) offers an integrated solution to utilise information embedded in pathology WSIs beyond what can
be obtained through visual assessment. For automated analysis of WSIs and validation of machine learning
(ML) models, annotations at the slide, tissue, and cellular levels are required. The annotation of important visual
constructs in pathology images is an important component of CPath projects. Improper annotations can result in
algorithms that are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the
crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how anno-
tations should be carried out. In this paper, we address this shortcoming by presenting the experience and best
practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of
pathologists, ML experts, and researchers as part of the Pathology image data Lake for Analytics, Knowledge and
Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of
annotations, diagnostic algorithm, annotation data dictionary, and annotation constructs. The analyses reported
in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle
of a CPath project.
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Introduction

Recent developments in imaging technology, digitisation
of glass slides, and artificial intelligence (AI) have
spurred an ongoing revolution in clinical histopathology
workflows and enabled automated analysis of digital

pathology whole-slide images (WSIs). This is evidenced
by growth in commercial and government investment in
Computational Pathology (CPath) as well as the rapid rise
in the number of scientific publications in this field [1,2].
In the United Kingdom, the Pathology image data Lake
for Analytics, Knowledge and Education (PathLAKE)
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consortium has been supported by £15 million fund to
create a unique data resource of pathology images
(a ‘data lake’) and develop AI technologies for cancer
diagnosis and personalised treatment for routine clinical
practice. Similar large-scale CPath projects are underway
elsewhere, such as the BIGPICTURE initiative [3].
CPath algorithms utilise the fact that there is funda-

mental information of diagnostic and prognostic benefit
embedded inWSIs [4]. The typical lifecycle of a histolog-
ical image analysis project in CPath is shown in Figure 1.
Digitised tissue slides may be viewed online for remote
consultation and can be processed by digital image
processing and machine learning (ML) algorithms for the
development of diagnostic and prognostic tools [5]. The
ability of ML approaches to mine ‘sub-visual’ image fea-
tures in WSIs that may not be discernible to a pathologist
can lead to improved quantitative modelling of disease
characteristics and patient outcome [6] (supplementary
material, Section S1.1).
The quality of annotation data and any biases in

data collection, algorithm evaluation, biological and
technical variations, and imaging quality can directly
impact the efficacy of the resulting ML-based CPath
solution [7,8]. A sufficient amount of well-labelled/
annotated/curated data is required to train ML models
[9,10]. With approaches such as self-supervised learn-
ing, weak supervision, domain adaptation, and transfer
learning, there has been significant progress in ML on
using a small amount of annotated data for training
algorithms that are robust and generalise well to
unseen WSIs [11–17]. However, validation of even
these label-efficient algorithms and root cause analysis
of failure cases of these algorithms still requires anno-
tations. In addition to the requirement of annotations

for training ML techniques, clinical deployment of
these methods also warrants using well-annotated
samples for strong validation to ensure robustness
and interpretability of ‘black-box’ or ‘grey-box’ AI
models [18]. Generating these annotations is a
labour-intensive process because of the large volumes
of data involved. Crowdsourcing may be cheaper and
quicker but has the potential of introducing inconsis-
tency, inaccuracies, and the difficulty of maintaining
quality control (QC), as well as ethical issues of shar-
ing clinically sensitive data [9].
There is no existing reference methodology for

annotating different structures in WSIs for the devel-
opment of ML approaches in CPath. The diversity of
CPath solutions in terms of their objectives and
diverse tissue types adds to challenges in defining a
unified annotation protocol in CPath. Therefore, with-
out any guidelines on how these annotations should be
collected and used, there may be a significant repeti-
tion of effort across different CPath projects in quality
assurance for making, managing, and using annota-
tions. Standardisation of annotation and metadata stor-
age along with imaging data is also an open problem
in this domain. Possibilities for such standardisation
include using DICOM [19] or the OME format which
supports structured annotations. Similarly, initiatives
towards sharing of standards, data, and methods will
pave the way to collaborative CPath [20].
To address the above-mentioned challenges in anno-

tations for CPath projects, we propose an annotation
workflow in this paper based on our experience in
PathLAKE exemplar projects. We hope that these
guidelines will pave the way for interoperability of
annotation protocols, improved generalisability of
algorithms via multicentre validation, and initiating a
wider discussion on stringent annotation protocols in
CPath.

Materials and methods

In this section, we discuss our proposed workflow for
semantic annotation of pathology images for CPath
projects. The study was approved by the Yorkshire &
The Humber – Leeds East Research Ethics Committee
(REC Reference: 19/YH/0293) under the IRAS Project
ID: 266925. Data collected were fully anonymised.

Proposed annotation workflow
The proposed annotation workflow is illustrated in
Figure 2 and each step is further discussed in the fol-
lowing sections.

Figure 1. Manual versus automated process of histopathology
image-based diagnosis/prognosis. The dotted arrows show the
manual process, whereas the solid arrows show the steps
involved in automating the process.
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Definition of project objectives
The annotation process will be guided mainly by the
specific objectives of the project. Therefore, we pro-
pose defining project objectives as the first step in the
annotation workflow which will help align the annota-
tion protocol with these objectives. For example, if the
primary objective of a CPath project is to automate the
process of grading breast cancer (BCa) in WSIs, then
different structures relevant to the grading process,
such as tubules, tumour cell morphology, and mitotic
figures, should be part of the annotation protocol.

Development of clinical diagnostic and/or
prognostic algorithms
To identify the relevant clinical and diagnostic con-
structs for downstream ML solutions, we propose
developing a clinical diagnostic/prognostic algorithm
as the second step in the CPath project. Such algo-
rithms enumerate steps that pathologists would per-
form for the routine diagnosis or prognosis of the
disease or outcome of interest. The development of a
clear and accurate clinical algorithm will guide the rest

of the annotation workflow and ensure a clear under-
standing of the significant aspects of the problem by
the multidisciplinary project team.

Development of an annotation data dictionary
We propose the development of a data dictionary for
every annotation project which is a standard reference
document throughout the lifecycle of the project. Real-
isation of the diagnostic algorithm forms the basis of
the data dictionary and defines different annotation
constructs. The dictionary can serve multiple purposes.
It can facilitate agreement on specific definitions of
regions and cells and prevent concept drift over and
beyond project lifetime. It can also act as a communi-
cation tool between pathologists, ML experts, and
other collaborators. Furthermore, case-level and WSI-
level labels in the annotation data dictionary can be
associated with existing ontologies such as Systema-
tized Nomenclature of Medicine (SNOMED) codes
[21]. The data dictionary may include information to
answer common project-related questions, for exam-
ple: What needs to be annotated? What is the

Figure 2. Proposed annotation workflow for a CPath project.
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diagnostic/prognostic value of each annotation type?
What order to follow for annotations? How much to
annotate (e.g. exhaustive, non-exhaustive)? Clear
examples of typical diagnostic cases with illustrative
images facilitate the task of training new project staff.
Parts of the PathLAKE data dictionary for our BCa
exemplar project are provided in supplementary mate-
rial, Section S3.1 (Figure S9 and Tables S2–S5).

Selection of annotation software
Annotation of a WSI is a detailed and time-consuming
process for pathologists. Therefore, it is important to
use a user-friendly and easily accessible annotation
software. The following factors should be considered
when selecting an annotation tool: Does it support all
annotation constructs defined for the project? Is it
web-based or desktop-based? Does it have a workflow
module, including the ability to configure a data dic-
tionary and annotation style to all annotators for a
CPath project (supplementary material, Table S5)?
How does it store the annotations and the related
meta-data? How secure is the system? Some more fac-
tors are mentioned in supplementary material,
Section S2.1.
There are several open-source tools available for

annotating histopathology images (supplementary
material, Table S1) and these are briefly discussed in
supplementary material, Section S2.1. A description of
steps involved in doing the annotations using the
selected software and defined data dictionary can be
found in supplementary material, Figure S1. These
steps are documented in a proper standard operating
procedure (SOP) so that everyone, especially new
members, can easily follow the flow of making
annotations.

Defining annotation levels
For achieving the aims and objectives of an ML project,
annotations should be marked at different levels of
detail. For example, keeping the case/slide-level annota-
tions at the first level can make the computational analy-
sis efficient since it is less time-consuming than marking
annotation constructs at region- and cell-level. A more
detailed level analysis, which may use more explainable
features, will require further detailed annotations of the
individual WSI. Descriptive and multi-modal annota-
tions could also be considered to exploit the information
stored in the form of pathology reports and other associ-
ated genomic and transcriptomics. Figure 3 shows the
four levels of annotations. Further details on the levels

of annotations are provided in supplementary material,
Section S2.2.

Defining annotation constructs
Different annotation shapes can be used for different
types and levels of annotations. The main annotation
constructs include bounding box, point/circle, polygon,
line, and text (supplementary material, Section S2.3
and Figure S4). Different line-style, linewidth, line-
colour, fill-colour, and so on can be defined in the
annotation protocol to use the same constructs for fur-
ther categorisation (supplementary material, Table S5).

Degree of annotation
Annotations of CPath WSIs can be performed at varying
degrees of exhaustiveness. In exhaustive annotations, all
the features that exist inside a construct (such as a free-
hand polygon, bounding box, or even the entire WSI) are
annotated. Such annotations make the evaluation of an
ML model easier. The required number of cell-level and
region-level boxes should be defined so that each WSI
could be checked for completeness of the annotations. In
non-exhaustive annotations, regions and cells of interest
in different areas of the image are marked in a non-
exhaustive manner (supplementary material, Figure S5).
Depending on a project’s objective, another important
aspect is the estimation of sample size [22,23]. A large
sample size may be required when developing a prognos-
tic algorithm where the objective is to measure very
minute differences between groups.

Phases of annotation
We recommend that annotations be carried out in a
phased manner where each phase focuses on a particular
level of annotations (supplementary material, Figure S6).
A pilot phase will help in early identification and possible
avoidance of problems in later phases of the project. It
can also help train the annotation team with new con-
structs and terms defined in the data dictionary. In the first
phase, the slides are assigned a case- or slide-level label.
Case-level annotations can be used in a weakly super-
vised manner for building ML models. Depending on the
nature of problem, the second phase can either be region-
level or cell-level annotations.

Interactive and active annotations
When the annotation budget is small or there is a limited
availability of annotation experts, interactive annotation
and active learning can be used to speed up exhaustive
annotations (supplementary material, Section S2.6). In
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interactive annotation, the user reviews the output of the
annotation model and provides feedback to improve
model’s performance. Active learning works in an itera-
tive manner where the annotation model asks the user
(teacher) for samples from an unannotated data set such
that the performance of the model improves.

Workload distribution
It is not trivial to accurately estimate workload distribu-
tion because of the complex nature of histopathology

image annotation, involving different levels (cases,
regions, cells, descriptive reports), details (exhaustive-
ness, concordance), and pathologists’ experience, clini-
cal time constraints, and daily work commitments [24].
A better distribution of workload can be arrived at by
listing the number of cases to annotate, the number and
types of annotations per phase, timeframe, and the num-
ber of available pathologists. A pilot phase or initial
analysis of the annotation might be helpful in the work-
load estimation. Similarly, an annotation tool facilitating
the automatic assignment of annotation tasks can ease

Figure 3. The four proposed levels of annotation.
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assigning cases to pathologists for annotation but, to the
best of our knowledge, there is no such tool publicly
available.

Quality review
Quantitative analysis relies on the quality of the WSIs
which in turn depends on the quality of tissue section-
ing, staining, and scanning. Supplementary material,
Section S2.7 describes how these steps can affect the
annotations and hence the ML-based analysis.

QC of images

The staining and scanning quality of images is impor-
tant for good annotations and hence better ML models.
Only images passing ImageQC [25] should be
included for further processing and analysis. In Pat-
hLAKE at Warwick, we have used an in-house repro-
ducible and automated image quality analysis pipeline
(ImageQC, supplementary material, Section S2.8) for
precisely localised artefacts to identify slides that need
to be re-scanned or regions that should be avoided
during computational analysis. Other software can
also be used for ImageQC such as HistoQC and
PathProfiler [25,26].

Annotation quality

During the whole process of annotation, annotation
quality should be regularly reviewed. This can help
annotators identify their errors and improve the anno-
tation quality over time.

QC metrics for annotation

For a detailed QC of annotations, we propose four met-
rics to measure completeness, exhaustiveness, diversity,
and agreement of annotations (Table 1). For the annota-
tion data dictionary, ‘completeness’ criterion ensures
that the annotations for an image are complete in terms
of the required number of cell-level and region-level
boxes by the required number of annotators. The
exhaustiveness criterion makes sure that all the struc-
tures (regions, cells, etc) in a region-box are annotated
as much as possible. To obtain a sufficient percentage of
annotated regions, some basic tissue segmentation/
thresholding is required so that the non-tissue area is

discarded in the calculations. Based on some initial
annotations, a threshold can then be defined to identify
cases not satisfying the exhaustiveness criterion. Simi-
larly, the agreement criterion measures the agreement
between multiple annotators. Different metrics can be
used to measure inter-annotator agreement (see supple-
mentary material, Section S2.9 for further details).

Automatic QC of annotations. Manual review of all the
annotations is a time-consuming task. For large CPath
projects, an automatic QC pipeline is required to iden-
tify problematic annotations. Depending on the types
of annotations, different QC steps can be defined.
Figure 4 shows generic steps involved in the automatic
QC and analysis of the annotations. Automatic QC of
annotations checks if the annotations conform with the
data dictionary, identifies issues, and calculates QC
metrics such as exhaustiveness and concordance. Any
issues identified are logged in the system with a
unique annotation ID, WSI ID, logged date, and
description of the issue for further triaging, assign-
ment, and resolution. We recommend a regular review
of the annotation by pathologists (supplementary mate-
rial, Section S2.10). The calculated QC metrics can
then be used for further analysis of the annotation, for
example, to prioritise regions/cells based on the cur-
rent area/count.

Annotation interoperability. For annotations to be inter-
operable with other software tools, there should a proper
schema defined for all the styles and structures so that
there is minimal overhead for translation for use with
other systems. Annotation schema help standardise anno-
tations and smooth the conversion process if the project
involves annotations frommultiple centres using different
annotation software.

Results

Application of proposed guidelines in PathLAKE
In this section, we present the results of applying the
guidelines discussed above for the Breast Cancer

Table 1. Proposed annotation QC metrics.
Matric name Purpose Unit

Completeness Are the annotations complete according to the defined protocol? Yes/no
Exhaustiveness What percentage of tissue is annotated in the defined box(es)? Percentage area
Diversity How many types of regions are annotated? 1 to number of defined types in the protocol
Agreement How much the annotators agree on regions?

How much the annotators agree on cells?
Jaccard similarity index
Cohen’s kappa
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(BraCe) project under the PathLAKE consortium so
that these can be used as a guide for future projects.
The cases and the corresponding annotations for
BraCe were collected from Nottingham City Hospital
UK where seven pathologists (IMM, MT, AGL, AYI,
AK, HOE, and MP) were involved in the annotation
process.

Project objectives
The objectives of the BraCe project were clearly
defined in a project document and included in the data
dictionary. The main objective of the BraCe project is
‘automatic analysis of breast cancer WSIs for grading
and prognosis’.

Diagnostic/prognostic algorithm
In line with the project objective, a clear and detailed
clinical diagnostic algorithm for BCa grading was spec-
ified in Figure 5. The algorithm provides a holistic view
of the different steps involved in the assessment pro-
cess. In BCa grading, three main features (tubule forma-
tion, nuclear pleomorphism [NP], and mitotic count)
are identified to calculate and assign a grade to each
case [27].

Annotation: data dictionary, software, levels, and
constructs
The main parts of the BraCe annotation data dictionary
are provided in Figure S9 (types of bounding boxes)
and Tables S2–S5 (description of boxes, regions, and
cells) described in supplementary material, Section S3.1.
An open-source online annotation software [28] was

customised for making annotations (supplementary
material, Section S3.2). Annotations were saved in
JSON format with fields for slide ID, annotator ID,
stain type (H&E, IHC), feature type (region, cell), and
feature name (tumour, stroma, etc). Annotations were
conducted at case-level, region-level, and cell-level, as
detailed in supplementary material, Tables S6–S12.
Supplementary material, Figures S2 and S3 show sample
annotations. Further details of annotation collection with
timeline are provided in supplementary material, Section-
S3.3. Supplementary material, Figure S10A shows a
timeline of the overall region- and cell-level annotations.
Similarly, supplementary material, Figures S10B and
S10C present details of the different types of region-level
and cell-level annotations, respectively. In total, 10,731
bounding boxes; 509,591 cells; and 194,717 regions were
annotated (supplementary material, Section S3.4).

Degree and phases of annotation
All the annotations were carried out in an exhaustive
manner and were quantified with the proposed exhaus-
tiveness metric further detailed in supplementary mate-
rial, Section S3.5. Supplementary material, Figure S11
shows the comparison of the exhaustiveness versus
diversity of H&E region-level annotations for individual
and consensus boxes for a subset of 40 cases. For
familiarity with the definitions and structures, two
multi-disciplinary workshops were held where a small
set of representative cases was used. Following a pilot
phase, relevant regions and cells were annotated in a
phased manner (supplementary material, Section S3.6).

Interactive/active annotations and workload
distribution
Interactive annotations of about 124,624 H&E and
109,862 progesterone receptor (PR)-stained cell bound-
aries were generated using NuClick [16] (supplementary
material, Section S3.7). Supplementarymaterial, Figure S7
shows some nuclei boundary segmentation for different
types of cells. Workload distribution was estimated based
on the pilot phase and initial annotations (supplementary
material, Section S3.8). A mix of pathologist experience
was ensured in each team of pathologists.

Quality review
Image/annotation quality analysis and pathologists’
agreement

The results of ImageQC pipeline (supplementary mate-
rial, Section S3.9) on WSIs with pen-marking, cover-
slip edges, and blurriness are shown in supplementary

Figure 4. Proposed annotation QC steps.
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material, Figure S12. The bar chart in supplementary
material, Figure S13 shows the annotations of different
types of regions in terms of counts and area (in mm2).
This type of analysis helps in prioritising the regions
for annotations. Similarly, the inter-annotator agree-
ment for sample regions in terms of Jaccard similarity
index (JSI) versus the area of the regions are shown in
supplementary material, Figure S14. Slides were
assigned in groups of two pathologists for measuring
inter-annotator agreement. As it is often quite difficult
to delineate the exact boundaries of different regions,
the agreement, in terms of JSI, among pathologists is
also low. For example, a good amount of area (about
28 mm2) is annotated for tumour-associated stroma but
JSI is still quite low (about 0.44) as compared to the
ideal index of 1 (supplementary material, Figure S14).
Figure 6A shows examples of variability among

pathologists for two region types of tumour and tumour-
associated stroma. Inter-pathologist variability might be
a result of annotator’s bias, experience, judgement,
ambiguous definitions in the data dictionary, or the diffi-
culty in delineating some regions.
Inter-pathologist agreement/disagreement on cell-

level annotations is shown in Figure 6B. To measure
the agreement, point annotations within a radius of
12 pixels at �40 magnification (approximately 0.25 μm
per pixel) were considered as annotation for the same

cell. It can be observed that it was quite common for
the pathologists to miss some cells (34%, Figure 6B1),
even when exhaustively annotating inside a bounding
box. Specific types of cell nuclei annotated by one
pathologist, but missed by another, include mostly
tumour NP1 and NP2, stroma, and tumour-infiltrating
lymphocytes (TILs) (Figure 6B4). The highest disagree-
ment is exhibited for tumour cells pleomorphism
(Figure 6B3). It is important to discuss such issues of
disagreement in pathologists’ review meetings to reach
a consensus (e.g. discussing and updating the features
of pleomorphism). The weighted Cohen’s kappa on
cells annotated by two annotators was 0.77 (when
tumour cells were categorised into NP1, 2, and 3) and
0.80 (without tumour cells categorisation).
To further analyse the inter-pathologist discordance

on different cell types, supplementary material,
Table S14 presents the confusion matrix. It is evident
that the different categories of NP are quite challenging
to identify, especially differentiating NP1 from NP2
(4,699 disagreed).

Annotation usage

As a demonstrative example, we present our results on
using the annotations gathered in our BraCe project for
the development of an ML model for classification of
different breast cells in H&E WSIs. For this purpose,

Figure 5. A diagnostic algorithm for assigning a grade to a breast cancer histopathology image. T, tubule formation; P, nuclear
pleomorphism; M, mitotic count; HPF, high-power field.
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our in-house HoVerNet cell classification and segmen-
tation model [29], which was pre-trained on the
PanNuke data set [30], was fine-tuned to classify breast
H&E cells by using a subset of the annotation in a
three-fold cross-validation protocol (supplementary
material, Section S3.9.4). The number of cell annotation
included 20,822 tumours; 3,134 TILs; 7,119 stromal;
and 1,528 normal epithelial cells. A marked improve-
ment in classification results, from a macro F1 score of
0.53 to 0.79 (supplementary material, Table S15), with
the use of the annotations clearly demonstrating the use-
fulness of annotations collected in this manner.

Discussion

To increase the usage of annotated data sets, it is
important that a standard annotation protocol agreed
between pathologists and the ML team is followed. In
the absence of a standard protocol, it can become very
difficult to make use of the existing annotated data
sets. Similarly, interoperability of annotations is a big

issue currently. For example, because of the existence
of many different image formats and compression
models for storing WSIs, an annotation software might
not support all the available file formats for different
scanners. Furthermore, each annotation software has
its own unique way of storing the annotations (XML,
JSON, CSV) and then a conversion process will be
required. To make use of an annotated data set, one
should ideally only require the annotation file and its
corresponding data dictionary. There is also a need to
standardise the process of annotation reviews by the
pathologists so that discordant annotations can be
resolved in a systematic manner.
It is important to note that the annotation strategy

should be determined by the task, and this would
mainly be determined by discussion between the ML
and pathology teams. Other approaches of annotations
might be considered if conventional cell-level or
region-level annotations are not sufficient for making
an assessment [31].
To the best of our knowledge, no other guidelines

for CPath annotations are available in the public

Figure 6. (A) An example of annotation variability between two pathologists (A1, tumour-associated stroma; A2, tumour). Annotations
by pathologist 1 (blue) and pathologist 2 (yellow). (B) Mean percentage of cells (B1) on which two pathologists agreed (B2), disagreed
(B3), and missed by one pathologist (B4) in breast H&E cell annotations.
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domain. The proposed guidelines can form the basis
for a community-wide consensus and refinement of
the annotation process as well as standardisation of
annotation storage and sharing. Below, we discuss
some limitations in CPath annotations and other anno-
tation strategies and list some recommendations based
on our experience.

Limitations and other annotation strategies
As mentioned earlier, annotations by histopathologists,
ideally a sub-specialist in the domain of CPath pro-
jects, trained on the annotation system and the
designed protocol are very important for training and
validation of ML methods especially when a new tis-
sue or cell type is being explored. However, some
annotations could be performed by trainees and other
human experts (such as crowdsourcing) including eas-
ily differentiated regions such as fat, ductal carcinoma
in situ, and so on, which can then be verified by a
pathologist [9]. Cell-level annotations could be diffi-
cult to collect from non-pathologists because the veri-
fication process itself may be time-consuming.
The manual annotations performed by pathologists

are known to be potentially subjective [32]. Therefore,
concordance of annotations where more than one
pathologist is involved may be an issue as reported in
the Results section. Similarly, getting annotations from
expert pathologists is time-consuming as well as
costly. Furthermore, the complexities of the annotation
tool used and the level of training required to become
familiar with the tool will add to the time cost of man-
ual annotations.
Complementary annotation strategies include the use of

interactive annotations, unsupervised, and semantic seg-
mentation approaches, as well as weakly supervised
methods [33,34]. Interactive annotations start with some
manual annotations to train an AI model which can then
help in generating automatic annotations. These interactive
annotations can then be confirmed or edited by experts.
The main limitation of this strategy is that it may some-
times take more time to amend the automatic annotations
than to make new ones. Similarly, in AI-assisted annota-
tions, an unsupervised orweakly supervisedAImodel gen-
erates the annotations for manual verification by experts.
However, the verification may be time-consuming and the
AI annotations may bias the pathologist to agree with the
AI annotations on regions or cells that are hard for humans
to differentiate [35]. In ML, there is a relatively new learn-
ing method called zero-shot learning, but to the best of our
knowledge there is no existing work on this learning strat-
egy for unsupervised CPath annotations.

Recommendations
In this section, we make some recommendations to
address some of the above-mentioned limitations.

i. Prior to making the annotations, a diagnostic/
prognostic algorithm should be designed so that
both the pathologist and ML team are aware of the
main goal and the purpose of the annotations.

ii. A CPath project team may find a pilot phase of
annotation beneficial to identify issues regarding
the usability of annotation tools, understanding of
the data dictionary, and level of agreement on con-
structs, regions, and cells.

iii. To allow a variety of downstreamML analyses, a large
number of region types can be allowed for region-level
annotations initially andmerged later, if necessary.

iv. Using some of the initial annotations by an ML
algorithm will help identify difficult regions and
cells which can then be prioritised for annotation.

v. Inter-annotator discordance should be discussed in
regular pathologist meetings to reach an agreement
or clarification of terms in the data dictionary for
unambiguous definitions.

vi. In case of ambiguous structures, where the patholo-
gist is not sure about the category, it is advisable to
keep a category of ‘unknown’ regions and cells to
avoid noisy annotations for ML model training and
further assessment.

In a future study, it would be useful to apply the pro-
posed guidelines to a complete lifecycle of a CPath pro-
ject to see the effects of some aspects, such as interactive
and active annotations for expediting the annotation pro-
cess, interoperability, and use of non-exhaustive annota-
tions. Similarly, the extension of the data dictionary and
the associated annotation schema to other projects is
required to see what overhead may be incurred in adapta-
tion of the proposed annotation protocols.
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